эксплуатация кабельных линий электропередачи курсовая

  • автор:

3.1 Эксплуатация кабельных линий

Наиболее существенным в обслуживании эксплуатируемых кабельных линий являются тщательное наблюдение за их трассами и контроль за нагрузкой кабелей.

В процессе эксплуатации кабельных линий важно регулярно вести их паспортизацию. Паспорт линии, кроме технической характеристики кабелей и условий их прокладки, содержит сведения о результатах предыдущих испытаний, о ремонтах, что помогает установить правильный режим для линий и своевременно выводить их в ремонт.

При наблюдении за трассой кабельных линий следят за тем, чтобы трасса содержалась в чистоте. Вблизи трассы не должны находиться ненужные предметы, так как они могут мешать работам при ликвидации аварий и ремонту кабелей, проложенных в земле. Поверхностный слой земли на трассе не должен иметь провалов, размывов и других ненормальностей, могущих вызвать повреждение кабелей.

Необходимо обращать внимание на обеспечение сохранности кабелей при выполнении земляных работ вблизи кабельных трасс. Земляные работы вблизи кабельных трасс можно производить только по предварительному согласованию с главным энергетиком предприятия. В необходимых случаях главный энергетик предприятия устанавливает надзор за производимыми работами, с тем чтобы была обеспечена сохранность проложенных кабелей. Надзор ведется вплоть до полного окончания земляных работ.

Особую опасность для проложенных в земле кабелей представляют земляные работы, выполняемые механизированными способами. Границы, в пределах которых допускаются такие работы, зависят от типа механизма. Однако во всех случаях работать механизмами не разрешается на расстоянии от трассы кабеля менее 1 м. На этом участке работы выполняют вручную и только лопатами.

Наблюдение за кабельными трассами осуществляют путем периодических осмотров этих трасс. Периодичность осмотров во многом зависит от местных условий: в местах, где кабели пересекаются с другими коммуникациями или могут подвергаться механическим повреждениям, обходы производят чаще. Периодичность осмотров кабельных трасс обычно устанавливает главный энергетик предприятия, который это делает, руководствуясь опытом и учетом местных условий.

Необходимо однако учитывать, что правилами ПТЭ предписано производить осмотры кабельных трасс не реже, чем в следующие сроки: кабелей в траншеях, коллекторах и туннелях один раз в 3 месяца; кабелей в колодцах и концевые муфты на линиях напряжением выше 1000 б один раз в 6 месяцев; концевые муфты кабелей напряжением до 1000 в один раз в 12 месяцев; кабельные муфты в трансформаторных помещениях, распределительных пунктах и подстанциях одновременно с осмотром другого оборудования.

Для учета неисправностей, обнаруженных при осмотрах кабельных трасс, и контроля за своевременным их устранением, на промышленных предприятиях ведется специальный журнал, заполняемый персоналом, совершающим осмотры кабельных трасс. При обнаружении дефектов, требующих немедленного устранения, лицо, осуществляющее осмотр, безотлагательно ставит об этом в известность своего начальника.

Кабельные трассы внимательно осматривают на всем их протяжении и особенно в местах пересечения трассами канав, кюветов и переходов кабелей из земли на стены или опоры.

При осмотрах туннелей, коллекторов и аналогичных кабельных сооружений обращают внимание на содержание их в чистоте (отсутствие остатков материалов, тряпок и мусора). Осматривают эти сооружения обычно два лица, предварительно проверив с помощью прибора нет ли в этих сооружениях газа. В коллекторах, туннелях и подобных им кабельных сооружениях проверяют состояние освещения и вентиляции; измеряют внутреннюю температуру, которая не должна превышать температуру наружного воздуха более чем на 10°; осматривают антикоррозийные покровы кабелей, внешнее состояние муфт; следят за тем, чтобы не имелось натяжений, смещений, провесов кабелей и т. п.

Перегрузки кабелей, которые носят систематический характер, влекут за собой быстрое ухудшение их изоляции и сокращают длительность работы. Недогрузка кабелей связана с недоиспользованием проводникового материала, заложенного в кабелях. Поэтому при эксплуатации кабельных линий периодически проверяют, чтобы нагрузка соответствовала установленной при вводе линии в эксплуатацию.

Максимально допустимые нагрузки для кабелей устанавливают на основе таблиц, приведенных в ПУЭ, по участку трассы кабеля, имеющему наихудшие тепловые условия, если длина этого участка составляет не менее 10 м. Нагрузку на кабели при вводе в эксплуатацию определяют отдельно для каждого сезона года, так как температура среды, окружающей кабели (почва, воздух), в разные сезоны года меняется и позволяет в холодные месяцы нагрузку на кабели повысить.

Контроль за нагрузками кабелей производят в сроки, определяемые главным энергетиком предприятия, но не менее двух раз в году. Один раз указанный контроль производят в период осенне-зимнего максимума нагрузки.

Контроль за нагрузками кабелей осуществляют наблюдением за показаниями амперметров на питающей подстанции, а при их отсутствии — с помощью токоизмерительных клещей. Анализ произведенных измерений нагрузок позволяет пересматривать режим работы кабелей, устанавливая режим, который обеспечит одновременно экономичную и надежную работу кабелей.

В условиях эксплуатации может иногда возникнуть необходимость в определении фактической температуры токоведущих жил кабеля. Так как температуру жилы кабеля определить непосредственным измерением не представляется возможным, прибегают к измерению температуры металлической оболочки кабеля. После этого производят пересчет с учетом перепада температуры между жилой и оболочкой кабеля.

В том случае, когда токоведущие жилы кабелей нагреваются выше допускаемых пределов, принимают меры для устранения причины этого явления. Снижают температуру жил кабелей следующими мероприятиями: уменьшая нагрузки на кабели; улучшая вентиляцию в туннелях и каналах; применяя вставки кабелей большего сечения на участках, где наблюдается перегрев кабелей; увеличивая расстояния между кабелями. При выходе из строя кабельной линии в промышленных предприятиях приходится часть работающего оборудования переводить на питание от других (соседних) кабелей. Это может привести к тому, что нагрузка дополнительно нагруженных кабелей окажется в часы максимума нагрузки выше допускаемой. Такие перегрузки для кабелей напряжением до 10 кв допускаются лишь от 15 до 30% только на время ликвидации аварии, но не более пяти суток. Эта перегрузка допускается в том случае, если в период, предшествующий аварии, максимальная нагрузка кабеля не превышала 80% допустимой. Для кабелей напряжением 20—35 кв перегрузка против номинальных значений не разрешается.

При прокладке кабелей в почве, агрессивной по отношению к их металлическим оболочкам (солончаки, болота, насыпной грунт со шлаком и строительным материалом), возникает почвенная коррозия свинцовых оболочек, что приводит к их разрушению. В этих случаях периодически проверяют коррозийную активность грунта по отношению к свинцовой оболочке кабелей. Такую проверку осуществляют, сравнивая фактическое удельное сопротивление и данные анализа проб грунта и воды с соответствующими допускаемыми значениями, приведенными в «Правилах защиты подземных металлических сооружений от коррозии» Госстроя. Если проверкой будет установлено, что степень почвенной коррозии угрожает целости кабелей, то принимают соответствующие меры. К ним относятся замена грунта на нейтральный, перекладка кабелей в нейтральный грунт, а также борьба с загрязнением грунта отбросами, действующими разрушающе на металлические оболочки кабелей.

Курсовая работа: Кабельные линии электропередач

Кабельные линии электропередачи — это линии для передачи электроэнергии или отдельных импульсов ее. Кабельные линии электропередачи состоят из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

Кабельные линии электропередачи должны проектироваться и сооружаться на основе технико-экономических расчетов с учетом развития сети, ответственности и назначения линии, характера трассы, способа прокладки, конструкций кабелей и т. п.

Кабельные линии электропередачи должны проходить по трассе, которая должна выбираться с учетом наименьшего расхода кабеля, обеспечения его сохранности при механических воздействиях, обеспечения защиты от коррозии, вибрации, перегрева и от повреждений соседних кабелей электрической дугой при возникновении КЗ на одном из кабелей. При размещении кабелей следует избегать перекрещиваний их между собой, с трубопроводами и пр.

Кабельные линии электропередачи должны выполняться так, чтобы в процессе монтажа и эксплуатации было исключено возникновение в них опасных механических напряжений и повреждений. Для этого кабели должны быть уложены с запасом по длине, достаточным для компенсации возможных смещений почвы и температурных деформаций самих кабелей и конструкций, по которым они проложены. Запрещается укладывать запас кабеля в виде колец (витков). Необходимо выполнять и ряд других правил по укладке кабелей и по их монтажу.

Непосредственно после сооружения и в процессе эксплуатации кабельные линии подвергаются разнообразным испытаниям, с помощью которых выявляются ослабленные места или дефекты в изоляции и защитных оболочках кабелей, соединительной и концевой арматуры и других элементах кабельных линий.

Кабельные линии электропередачи, проложенные в земляной траншее, невзирая на дополнительную защиту в виде покрытия кирпичом и систематическое наблюдение за состоянием трассы линий, весьма подвержены внешним механическим повреждениям, которые могут возникать при прокладке и ремонте других городских подземных сооружений, проходящих по трассе КЛ. Поэтому эти линии необходимо своевременно проверять для выявления слабых мест и повреждений.

Кабельные линии электропередачи должны по возможности прокладываться по участкам, на которых отсутствуют грунты, агрессивные по отношению к металлическим оболочкам кабелей.

Подземные кабельные линии электропередачи должны обеспечиваться охранными зонами над кабелями. Размер этих зон зависит от напряжения, проходящего по данной кабельной линии.

Подводные кабельные линии электропередачи обеспечиваются охранной зоной, определяемой параллельными прямыми на расстоянии 100 м от крайних кабелей.

Все охранные зоны должны выполняться с соблюдением требований правил охраны электрических сетей

Эксплуатация кабельных линий электропередачи курсовая

8 Эксплуатация кабельных линий электропередачи

8.1 Осмотр кабельных линий

При техническом обслуживании кабельных линий (КЛ) периодически проводят их осмотры с целью визуального обнаружения неисправностей и дефектов.

КЛ на напряжение до 35 кВ, проложенные открыто, должны осматриваться не реже 1 раза в 6 месяцев; проложенные в земле — не реже 1 раза в 3 месяца.

Не реже 1 раза в 6 месяцев выборочные осмотры КЛ должны проводиться административно-техническим персоналом.

Внеочередные осмотры КЛ должны проводиться в период паводков и после ливневых дождей, когда возможны сдвиги почвы и попадание грунтовых вод в подземные кабельные сооружения, а также после отключения КЛ релейной защитой.

При осмотрах трасс КЛ, проложенных в земле, проверяется наличие знаков привязки линии к постоянным ориентирам (или пикетов на незастроенной территории), обозначающих трассу. На трассе КЛ не должно быть вспучивания или проседания грунта, не должно производиться каких-либо работ, раскопок, складирования строительных материалов, свалок мусора.

Правилами охраны электрических сетей для КЛ, проложенной в земле, устанавливается охранная зона в размере 1 м с каждой стороны от крайних кабелей. Любые работы в охранной зоне КЛ должны выполняться с разрешения и под наблюдением организации, эксплуатирующей КЛ.

В местах выхода кабеля из земли, например на стену здания или опору ВЛ, должна быть защита кабеля от механических повреждений.

Осмотры КЛ, проложенных в кабельных сооружениях (тоннелях, эстакадах и других), должны проводить два человека. В первую очередь проверяется с помощью газоанализатора отсутствие в кабельных сооружениях газов, состояние освещения и вентиляции.

Проверяется общее состояние кабельных сооружений, наличие средств пожаротушения, отсутствие посторонних предметов. Все металлические конструкции кабельных сооружений должны быть покрыты негорючим антикоррозийным составом.

Кабельные туннели должны быть оборудованы средствами для отвода ливневых и почвенных вод. Эти средства должны находиться в исправном состоянии.

По температуре внутри кабельных сооружений косвенно контролируется тепловой режим кабелей. Температура воздуха внутри сооружений должна превышать температуру наружного воздуха не более чем на 10 о С.

На открыто проложенных кабелях должны быть стойкие к воздействию окружающей среды бирки, прикрепляемые в начале и конце кабеля и через 50 м. На этих бирках указываются: марка и сечение кабеля, напряжение, номер или другое условное обозначение линии. На бирках муфт должны быть отмечены номер муфты и дата ее монтажа.

Проверяется состояние антикоррозийного покрова металлических оболочек кабелей, расстояния между кабелями, состояние соединительных и концевых кабельных муфт, отсутствие следов вытекания масла или кабельной мастики.

Все замеченные при осмотрах дефекты и неисправности КЛ заносятся в листок осмотра. Эти дефекты и неисправности в зависимости от их характера устраняются при текущем техническом обслуживании. Повреждения аварийного характера должны быть устранены немедленно.

^ 8.2. Допустимые нагрузки при эксплуатации

Для каждой КЛ при вводе в эксплуатацию устанавливается допустимая токовая нагрузка. Эта нагрузка определяется по условию, что температура жил кабеля будет не выше длительно допустимой температуры Θдоп, нормируемой [2, 14].

Для кабелей с бумажной пропитанной изоляцией величина Θдоп зависит от номинального напряжения Uном (см. табл. 8.1).

Таблица 8.1

Uном, кВ До 3 6 10 20 35
Θдоп, 0 С 80 65 60 55 50

с изоляцией из полиэтилена и поливинилхлорида Θдоп = 70 о С;

с изоляцией из сшитого полиэтилена Θдоп = 90 о С;

с резиновой изоляцией Θдоп =65 о С.

Перегрев изоляции кабеля выше Θдоп заметно ускоряет процесс ее старения и, следовательно, сокращает срок службы кабеля.

Непосредственное измерение температуры жилы кабеля представляет значительные трудности. Поэтому для проверки теплового режима кабель нагружают током и снимаются показания термодатчиков, установленных на стальной броне (оболочке или шланге) кабеля.

Температура жилы кабеля Θж рассчитывается по формуле

где Θб – температура брони (оболочки или шланга), измеренная при испытании;

ΔΘ – превышение температуры жилы кабеля над температурой брони (оболочки или шланга).

Величина ΔΘ рассчитывается по эмпирической формуле или определяется по номограммам [7, 24]. Одна из таких номограмм для кабелей с алюминиевыми жилами, находящихся в эксплуатации от 5 до 25 лет, приведена на рис. 8.1.

Токовая нагрузка КЛ, при которой Θж = Θдоп, соответствует допустимой длительной нагрузке.

Рисунок 8.1 — Разность температур между броней и алюминиевыми жилами кабелей напряжением 10 кВ

В практической эксплуатации действительную токовую нагрузку кабеля ^ I сопоставляют с длительно допустимым током I доп, приводимым в справочной литературе [2]. Длительный режим работы кабеля считается допустимым при выполнении условия

где k – поправочный коэффициент.

Принимаемые по справочным данным [2] поправочные коэффициенты учитывают реальную температуру охлаждающей среды, количество кабелей в земляной траншее, удельное тепловое сопротивление грунта, срок службы кабеля и другие факторы.

При эксплуатации КЛ допускаются кратковременные перегрузки, например, на период ликвидации аварии [1]. Допустимые перегрузки кабелей напряжением до 10 кВ в зависимости от вида изоляции составляют:

кабели с бумажной изоляцией — на 30%;

изоляцией из полиэтилена и поливинилхлорида — на 15%;

сшитого полиэтилена — на 25%;

для кабелей со всеми видами изоляции, находящихся в эксплуатации более 15 лет, перегрузки должны быть снижены до 10%.

Указанные перегрузки допускаются продолжительностью не более 6 часов в сутки в течение 5 суток. Суммарная продолжительность перегрузки в год не должна превышать 100 ч.

Для кабелей напряжением 20-35 кВ с бумажной изоляцией перегрузки не допускаются [1].

Контроль нагрузочного режима КЛ осуществляется снятием графиков нагрузки, выполняемым не реже 2 раз в год. Причем один раз контроль осуществляется в период зимнего максимума нагрузки.
^ 8.3 Профилактические измерения и испытания

Особое внимание при техническом обслуживании КЛ уделяется кабельной изоляции. Одним из средств контроля состояния изоляции является измерение ее сопротивления, выполняемое мегаомметром. Схемы измерения фазной и междуфазной изоляции кабеля показаны на рис. 8.2. Отсчет величины сопротивления изоляции осуществляется приблизительно через 1 минуту после начала процесса измерения. Сопротивление изоляции кабелей на напряжение до 1 кВ должно быть не менее 0,5 МОм. Сопротивление изоляции кабелей на напряжение выше 1 кВ не нормируется.

Рисунок 8.2 — Измерение сопротивления фазной (а) и междуфазной (б) изоляции кабеля

Электрическая прочность изоляции КЛ проверяется испытанием повышенным выпрямленным напряжением. Величина испытательного напряжения Uисп и длительность его приложения t в зависимости от вида кабельной изоляции приведены в табл. 8.2.

Испытательное напряжение прикладывается поочередно к каждой жиле кабеля, при этом две другие жилы кабеля и его металлическая оболочка (экран) должны быть заземлены. Испытательное напряжение поднимается плавно со скоростью 1…2 кВ/c до требуемого значения и поддерживается неизменным в течение времени, указанного в табл. 8.2.

При проведении испытаний повышенным напряжением измеряются токи утечки и их несимметрия по фазам.

Изоляция кабеля считается удовлетворительной, если не произошло ее пробоя, а токи утечки и коэффициент несимметрии этих токов по фазам не превысили значений, приведенных в табл. 8.3.

Таблица 8.3

Uном, кВ 6 10 20 35
Iут, мА 0,2 0,5 1,5 1,8
Iутmax/ Iутmin 2 3 3 3

У кабелей с пластмассовой защитной оболочкой (шлангом) дополнительным испытаниям повышенным выпрямленным напряжением подвергается защитная оболочка. Испытательное выпрямленное напряжение –10 кВ в течение 1 мин подается между металлической оболочкой (экраном) и землей. При неуспешных испытаниях отыскивается место повреждения пластмассовой оболочки и выполняется ее ремонт.

На вертикальных участках кабелей напряжением 20…35 кВ с бумажной изоляцией контролируется осушение изоляции. Этот контроль осуществляется с помощью термометров, укрепленных на броне кабеля в верхней, средней и нижней частях вертикального участка. Разность показаний термометров более чем на 2…3 о С свидетельствует о сильном осушении изоляции и начавшемся процессе ее пробоя. В этом случае вертикальный участок кабеля должен быть выведен из эксплуатации и заменен.

У одножильных кабелей, собранных в трехфазную группу, измеряется токораспределение. Неравномерность распределения токов по фазам должна быть не более 10%.

После отсоединения кабеля от оборудования, профилактических испытаний, монтажа или перемонтажа кабельных муфт должны быть проверены фазировка кабеля и целостность его жил. Сущность фазировки заключается в проверке соответствия фаз А, В и С кабеля фазам А, В и С, например, распределительного устройства, к шинам которого подключается кабель после отсоединения.

Определение целостности жил выполняется мегаомметром. Измерения сопротивления проводят между каждой парой фаз с одного конца кабеля. Жилы кабеля на другом конце замыкаются между собой. При целых жилах кабеля мегаомметр при всех измерениях должен показать нулевое сопротивление.

^ 8.4 Определение мест повреждения

Несмотря на периодический осмотр кабельных трасс и проведение профилактических испытаний, при эксплуатации имеют место повреждения (случайные отказы) КЛ. Как правило, это пробой изоляции, реже – разрыв фаз.

Поврежденный кабель отсоединяется с обоих концов от оборудования и с помощью мегаомметра определяется характер повреждения: измеряется сопротивление изоляции между каждой фазой и заземленной металлической оболочкой и между каждой парой фаз. Измерения проводят с одного конца кабеля. Фазные жилы другого конца кабеля разомкнуты (для определения замыканий) или замкнуты и заземлены (для определения обрывов).

Результаты измерений могут не выявить характер повреждения, поскольку переходное сопротивление в месте повреждения может быть достаточно высоким, в частности, из-за затекания места пробоя изоляции маслоканифольным составом (заплывающий пробой) в кабелях с бумажной пропитанной изоляцией.

Для снижения переходного сопротивления изоляция кабеля в месте повреждения прожигается. Для этого на кабель подается напряжение, достаточное для пробоя изоляции в месте повреждения. После некоторого времени повторения пробоев переходное сопротивление в месте повреждения уменьшается, разрядное напряжение снижается, а ток разряда увеличивается. Изоляция прожигается этим током, переходное сопротивление в месте повреждения уменьшается.

После определения характера повреждения выбирается способ и аппаратура для определения места повреждения кабеля.

По точности определения места повреждения различают относительные и абсолютные методы. ^ Относительные методы имеют определенную погрешность и позволяют определить лишь зону повреждения. Это импульсный, петлевой и емкостной методы.

Точное место повреждения позволяют найти абсолютные методы такие, как индукционный и акустический.

Импульсным методом определяется зона однофазного или многофазного замыкания, зона обрыва любого количества фазных жил.

В поврежденную линию посылается эталонный электрический импульс. По экрану измерительного прибора, проградуированному в мкс, измеряется интервал времени tx между моментом подачи импульса и моментом прихода импульса, отраженного от места повреждения (рис. 8.3).

Скорость распространения электромагнитных волн в силовых кабелях практически не зависит от сечения и материала жил и составляет 160+3 м/мкс. Расстояние до места повреждения вычисляется как lx = 80tx, м.

Для случая, приведенного на рис. 8.3, зона повреждения находится на расстоянии lx = 80 . 3,5 = 280 м от места измерения.

Рисунок 8.3 — Экран прибора при определении зоны повреждения кабеля импульсным методом: а – при замыкании; б – при обрыве

По знаку отраженного импульса судят о характере повреждения. Если посланный и отраженный импульс разного знака – повреждение типа замыкание (рис. 8.3,а), если одного знака – повреждение типа обрыв (рис. 8.3,б).

Петлевой метод применяется для определения зоны однофазных и двухфазных замыканий на землю. Этот метод основан на измерении омического сопротивления жил кабеля до места повреждения.

На одном конце кабеля замыкаются нормальная и поврежденная жилы (образуется петля). Измерения проводятся с другого конца кабеля (см. рис. 8.4). Для измерения сопротивлений R2 и R4 может использоваться, например, мост постоянного тока.

Рисунок 8.4 — Схема определение зоны повреждения петлевым методом
В одну диагональ моста включается источник постоянного напряжения – ^ U, в другую – измерительный прибор, например милливольтметр mV . Регулируемыми сопротивлениями R1 и R3 достигается равновесие моста – нулевое показание милливольтметра.

Известно, что равновесие моста будет достигаться при выполнении соотношения

где ^ R2 – сопротивление нормальной жилы и участка поврежденной жилы от конца кабеля до места повреждения;

R 4 – сопротивление участка поврежденной жилы от начала кабеля до места повреждения.

Поскольку сопротивление жилы кабеля пропорционально его длине, зона повреждения после достижения равновесия моста определяется несложными вычислениями

где l – длина кабеля.

Емкостной метод позволяет определить зону обрыва фазных жил кабеля. Метод базируется на измерении емкости между каждой жилой и заземленной металлической оболочкой кабеля.

Пусть измеренная емкость оборванной жилы составляет ^ Сх, а измеренная емкость целой жилы – С . Расстояние до места обрыва составляет

При обрыве трех фазных жил емкость кабеля рассчитывается по известному выражению

где bo – удельная емкостная проводимость кабеля, определяемая по справочным данным.

Индукционный метод позволяет определить место многофазных замыканий в кабеле после успешного прожига изоляции в месте повреждения. Метод основан на улавливании магнитного поля, создаваемого вокруг кабеля протекающим по нему током. Улавливание поля производится с помощью специальной поисковой катушки, имеющей магнитный сердечник для концентрации поля.

По двум поврежденным жилам кабеля пропускается ток высокой частоты (800…1000 Гц) от звукового генератора G (рис. 8.5). Вокруг кабеля образуется магнитное поле высокой частоты. Поместив в это поле поисковую катушку, соединенную через усилитель с наушниками, можно прослушивать звуковой сигнал. Обслуживающий персонал, продвигаясь по трассе КЛ, прослушивает этот звуковой сигнал.

Рисунок 8.5 — Иллюстрация индукционного метода отыскания повреждения

Слышимость сигнала вдоль кабельной линии будет периодически изменяться от max до min. Это объясняется спиральным повитом жил кабеля. Преобладание над поверхностью земли магнитного поля одной жилы периодически меняется на преобладание противоположного магнитного поля другой жилы.

В месте короткого замыкания ток от генератора G меняет свое направление, интенсивность магнитного поля и, следовательно, слышимость сигнала в этом месте усиливаются. За местом повреждения звукового сигнала не будет.

Использование тока высокой частоты необходимо для отстройки звукового сигнала от фона промышленной частоты 50 Гц соседних кабелей.

Акустический метод позволяет определить место однофазных и многофазных замыканий в кабеле при заплывающем пробое.

В поврежденную жилу (в поврежденные жилы) периодически подаются импульсы постоянного напряжения, например, от накопительного конденсатора. В месте повреждения возникают разряды, вызывающие акустический шум. Уровень этого шума прослушивается с поверхности земли, например, с помощью стетоскопа или прибора с пьезодатчиком-преобразователем механических колебаний в электрические.

При практическом поиске мест повреждения КЛ используется сочетание относительных и абсолютных методов. С помощью относительного метода определяется зона повреждения, а затем в этой зоне отыскивается место повреждения абсолютным методом.

^ 8.5. Ремонт кабельных линий

КЛ ремонтируются при их повреждениях, например при пробое изоляции кабеля, а основной операцией при ремонте КЛ является установки новой или замена существующей кабельной муфты. Таким образом, при эксплуатации КЛ используется система аварийно-восстановительного ремонта (система АВР)

При повреждении кабеля обслуживающий персонал должен отыскать место повреждения, а при прокладке кабеля в земляной траншее — раскопать участок траншеи в этом месте. Раскопки должны вестись осторожно, а при глубине более 0,4 м – только лопатами.

Объем работ при текущих и капитальных ремонтах КЛ определяется по результатам предшествующих осмотров, испытаний и измерений. Для планирования ремонтов КЛ ведется следующая эксплуатационно-техническая документация:

акты скрытых работ с указанием пересечений и сближения кабелей со всеми подземными коммуникациями;

акты на монтаж кабельных муфт;

протоколы измерения сопротивления изоляции;

протоколы испытаний изоляции КЛ повышенным напряжением;

протоколы измерения сопротивлений заземляющих устройств;

журналы неисправностей КЛ;

журналы учета работ на КЛ и другие документы.

На основании этих документов составляется многолетний график работ, в котором указывается перечень всех КЛ и годы их вывода в ремонт в соответствии с техническим состоянием. На основании многолетнего графика составляются годовые графики работ.

При капитальном ремонте КЛ выполняются следующие основные работы:

выборочное шурфление кабельных траншей с оценкой состояния кабелей и муфт;

полное вскрытие кабельных каналов с исправлением раскладки кабелей, устранением коррозии оболочек, чисткой каналов, заменой или ремонтом конструкций для крепления кабелей;

переразделка дефектных муфт;

частичная или полная замена участков КЛ;

ремонт заземляющих устройств;

окраска металлических конструкций в кабельных сооружениях.

При окончании ремонтных работ проводятся испытания КЛ, объем которых рассмотрен в п. 8.3. Кроме того, КЛ испытываются под нагрузкой в течение 24 ч.

Все работы, выполненные при капитальном ремонте КЛ, принимаются по акту. Акты со всеми приложениями хранятся в паспорте КЛ.

Добавить комментарий

Ваш адрес email не будет опубликован.